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Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps
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Superluminal pulse reflection is shown to occur in a class of one-dimensional asymmetric photonic band
gaps in which a spectral window inside the gap is opened. By means of a coupled-mode equation analysis, we
describe in detail two possible realizations of superluminal pulse reflection that can be achieved using fiber
Bragg gratings. The former method is based on the introduction of a defect into the otherwise periodic
dielectric structure, whereas the latter one exploits the interference of two closely-spaced resonance modes and
simulates the dispersion properties of an inverted medium possessing a doublet line.
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The propagation of electromagnetic wave packets at a
perluminal group velocity@1–3# has received in the past few
years a renewed attention and stimulated a controversia
bate about interpretation of experimental results@1,2,4#. In
the optical context, superluminal phenomena have been
served in earlier experiments on pulse propagation in abs
tive media@5#, and more recently in tunneling experimen
of pulses across one-dimensional photonic band gaps~PBGs!
@6–8# and in pulse propagation in inverted~amplifying! me-
dia @9#. In most cases, main attention was paid to the inv
tigation of superluminal properties in pulse transmissi
however in configurations involving counterpropagati
waves, such as in tunneling through PBGs or in optical ph
conjugation@10#, an important issue is whether superlumin
peak advancement may occur in pulse reflection. Superlu
nal peak advancement in pulse reflection has been rece
predicted in optical phase conjugation, however solely in
unstable~self-oscillatory! regime @10#. Conversely, passive
one-dimensional PBG structures used so far for optical t
neling experiments@6,7#, e.g., quarter-wave-stack multid
electric mirrors, generally show superluminal tunneli
times in transmission but the reflected pulse is in turn sub
minal.

In this report we show that superluminal peak advan
ment for the reflected pulse is commonplace in passive P
structures with broken symmetry in which a narrow tran
mission window is created inside the gap by the introduct
of a defect. Using a fiber Bragg grating~FBG! @11# as a
photonic barrier, we present two significant and experim
tally accessible examples of PBG design for testing supe
minal pulse reflection. In particular, by use of inverse sc
tering techniques, we design a FBG capable of simulatinin
reflection the gain-doublet dispersion curve of inverte
atomic gases that is known to give rise to superluminal p
nomena@9#.

We consider Bragg scattering in an optical fiber with
periodic modulation of the refractive index profile@11# ~see
Fig. 1! or, equivalently, in a slab waveguide with a shallo
and almost periodic surface corrugation, where a coup
mode theory is suited to describe interaction of coun
propagating waves. The refractive index variation along
PBG axis z is written as n(z)5n0$112h(z)cos@2pz/L
1f(z)#% for 0,z,L, where:L is the grating length,n0 is the
average refractive index of the structure,L is the nominal
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period of the grating, andh(z),f(z) describe the slow varia
tion, as compared to the grating periodL, of amplitude and
phase of the grating structure, respectively. If we consi
the propagation of a monochromatic fieldE(z,t) at the opti-
cal frequency v close to the Bragg frequencyvB
5c0p/(n0L), wherec0 is the speed of light in vacuum, w
may write E(z,t)5u(z,d)exp(2ivt1ikBz)1v(z,d)exp(2ivt
2ikBz)1c.c., wherekB5p/L is the Bragg wave number an
u,v are the envelopes of counterpropagating waves@see Fig.
1~a!# that, for a weak grating depth@ uh(z)u!1#, satisfy the
following coupled-mode equations@11#

du/dz5 idu1 iq~z!v, ~1a!

dv/dz52 idv2 iq* ~z!u. ~1b!

In Eqs.~1!, q(z)[kBh(z)exp@if(z)# represents the complex
valued scattering potential, whereasd[k02kB5n0(v
2vB)/c0 is the detuning parameter between the wave nu
ber k05n0v/c0 of counterpropagating waves and the refe
ence Bragg wave numberkB . Equations~1! have the form of
the Zakharov-Shabat system encountered in problems o
verse scattering@12#. The general solution to Eqs.~1! can be

FIG. 1. ~a! Schematic of a one-dimensional PBG with counte
progating wave geometry.~b! and ~c! Boundary conditions and
spectral coefficients of a PBG for forward and backward pulse
cidence, respectively.~d! Schematic of superluminal pulse reflectio
for forward pulse incidence (t r 1,0). The peak of the reflected
pulse leaves the grating at the input planez50 when the peak of
the incident pulse has not yet entered into the grating. The p
peak distance isDL52t r 1c0 /n0.
©2001 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E 64 037601
written as @u(L,d),v(L,d)#T5M„u(0,d),v(0,d)…T, where
the elements of the 232 transfer matrixM5M(d) satisfy
the conditions M225M11* , M215M12* , and detM
5M11M222M12M2151. Since we consider a single ligh
pulse incident onto the PBG, two different boundary con
tions may be applied depending on the side of incidence@see
Figs 1~b! and 1~c!#. For a forward-propagating incident puls
@Fig. 1~b!#, the light comes from the left side of the gratin
z50 andz5L are the input and output planes, respective
and the appropriate boundary condition isv(L,d)50. For a
backward-propagating incident pulse@Fig. 1~c!#, the light
comes from the right side of the grating and the appropr
boundary condition isu(0,d)50. Notice that in this case
input and output planes are reversed. The spectral reflec
coefficientsr 6(d) for forward and backward light incidenc
are defined byr 1(d)5@v(0,d)/u(0,d)#v(L,d)5052M21/
M22 andr 2(d)5@u(L,d)/v(L,d)#u(0,d)505M12/M22, re-
spectively, whereas the spectral transmission coeffic
is given by t(d)5@u(L,d)/u(0,d)#v(L,d)505@v(0,d)/
v(L,d)#u(0,d)5051/M22 and is independent of light inciden
side. Owing to the form of the transfer matrixM, the spec-
tral coefficientsr 1 , r 2 , and t are not independent but sa
isfy the relations r 2(d)t* (d)52r 1* (d)t(d) and R(d)
1T(d)51, where R(d)5ur 6(d)u2 and T(d)5ut(d)u2 are
the spectral reflection and transmission coefficients in pow
In addition, from inverse scattering theory@12# it is known
that r 6(d), f (d)5t(d)exp(2idL) and 1/f (d) are causal
functions, i.e., they are analytic functions ofd in the upper
half plane Im(d).0, f (d)→1 asd→` and uR(d)u,1 on
the real axis for a pure index grating~see also@13#!. Such
properties of analyticity ensure that the front of any disco
tinuous signal may not propagate through the grating a
speed higher thanc0 /n0, nor the front of any discontinuity
may be reflected before it is incident upon the grating. Ho
ever, if we consider an analytic wave form, such as a Ga
ian light pulse, superluminal pulse propagation, either
transmission or reflection, may occurwithout appreciable
pulse distortionprovided that the spectral width of the puls
is narrow enough@14#. For such analytic wave forms, th
group delayt t , defined ast t5]f t /]v (f t is the phase of
t), may be adopted as an estimate for barrier crossing t
@1,8,15#, and superluminal pulse tunneling occurs whene
t t,L/c0. If we consider the reflected pulse instead of t
transmitted one, we may introduce in a similar way the gro
delayt r 6 ast r 65]f r 6 /]v, wheref r 6 is the phase of the
spectral coefficientr 6. The group delayt r 6 accounts for
time delay (t r 6.0) or time advancement (t r 6,0) suffered
by the incident pulse after being reflected at the input pl
of the grating. Notice that, since for an asymmetric grat
r 1 andr 2 are distinct, different group delayst r 1 andt r 2 are
introduced depending on pulse incidence side. Superlum
pulse reflection occurs whenevert r 1,0 for forward pulse
incidence, andt r 2,0 for backward pulse incidence. In th
case, the peak of the reflected pulse appearsbeforethe peak
of the incident pulse has arrived at the input plane, i.e.,
fore it has entered into the PBG@see Fig. 1~d!#. As for the
case of superluminal pulse transmission in other photo
barriers, the superluminal pulse peak advancement of the
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flected pulse can be understood from a physical viewpoin
a reshaping process of the leading part of the incident pu
which has already entered into the grating.

The group delayst t , t r 1, andt r 2 are not independent bu
satisfy the relationt t5(t r 11t r 2)/2. In a symmetric grating,
for which r 15r 2 and hencet t5t r 15t r 2, the group delay
is usually superluminal in transmission, i.e.,t t,L/c0, for a
pulse the spectrum of which is tuned inside the band gap
the PBG; however,t t is usually positive, both inside an
outside the gap region, which prevents superluminal pu
reflection. In order to construct a PBG that shows peak
vancement in reflection, it is worth observing that, owing
the analyticity properties of the spectral transmission a
reflection functions, the following inequality between th
group delay in reflectiont r ~eithert r 1 or t r 2) and the power
spectral reflectivityR(d) of the PBG is always satisfied@13#:

t r~d!>2
n0

pc0
E

2`

` ] lnAR~d8!

]d8

dd8

d82d
, ~2!

where the equality~for eithert r 1 or t r 2) occurs for a PBG
with minimal phase shift@13#. From Eq.~2! we realize that,
in order to gett r,0 at the center of band gapd50, the
reflectivity R(d) should show a~local! minimum at around
d50, i.e., a transmission window needs to be created ins
the band gap. There are several ways to open a transmis
window inside the band gap; here we present two simple
noteworthy methods that can be experimentally implemen
using FBGs as photonic barriers.

The first method consists of the introduction of a defe
inside a uniform PBG, which is known to create a localiz
mode at a frequency inside the gap. In particular, the s
plest defect is the introduction of ap phase shift in the
modulation index profile at a locationz5L1 (0,L1,L),
i.e., we assumeq(z)5q0 for 0,z,L1 andq(z)52q0 for
L1,z,L, whereq05h0kB is taken to be constant and rea
In case of a sharp phase shift, the transmission and reflec
functions of the PBG can be easily determined in an anal
cal form by cascading the transfer matrices of two unifo
PBGs. Though the general expressions are rather cum
some to be given here, it turns out that a dip appears in
spectral reflectivity centered atd50. In case of a near-
symmetric grating (L1;L/2), which is of major interest for
our purposes, a simple expression for the group delay
reflection near the center of the dip (d50), for either for-
ward or backward pulse incidence, can be derived and re

t r 656
1

e

n0L

2c0
Fsinh~q0L/2!

~q0L/2! G2

1O~e0!, ~3!

where e[122L1 /L measures the grating imbalanc
(ueu!1). The minimum of power reflectivity in the dee
is in turn ur (d50)u;q0Lueu. From Eq.~3! it follows that,
for an asymmetric PBG (eÞ0), superluminal peak pulse
advancement occurs on one side of pulse incide
~e.g.,t r 1,0 for L1.L/2), but reflection on the other side o
the structure is always subluminal~e.g., t r 2.0 for L1
.L/2). In addition, the group delay in transmission neard
50, which is the average of group delays in reflections, tu
1-2
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BRIEF REPORTS PHYSICAL REVIEW E 64 037601
out to be always larger thann0L/c0, i.e., pulse slowing down
occurs in transmission. As an example, Figs. 2~a! and 2~b!
show the power spectral reflectivityR and group delays ver
sus frequency detuningn5(v2vB)/(2p) for a uniform
PBG with ap phase shift. The values of parameters cho
in the calculations correspond to a typical FBG operating
the 1.5 mm wavelength of optical communications, fo
which superluminal pulse reflection should be experim
tally observable using nanosecond pulses. Thep phase shift
was introduced assuming a steep change ofq with a tanh-like
profile @see Fig. 2~c!#. An example of superluminal puls
reflection that uses transform-limited nanosecond Gaus
pulses as probing pulses is shown in Fig. 2~d!. The spectral
extension of the incident pulse, shown by the dashed curv
Fig. 2~a!, was chosen sufficiently narrow to avoid pulse d
tortion. Figure 2~d! clearly indicates an 8-ns superlumin
peak advancement of the reflected pulse, correspondin
;25% of pulse duration@33 ns, full width at half maximum
~FWHM!#, which should be easily detected using stand
optoelectronic techniques.

The second structure we consider is an asymmetric F
in which the dispersion curve is tailored, by use of inve
scattering methods, to simulate the dispersion properties
gain doublet, which is known to give rise to negative gro
velocities@9#. We assume forr 1(d) the superposition of two
closely-spaced Lorentzian lines of the same amplitude
width, i.e.,

r 1~d!5
ik

d1e1 ig
1

ik

d2e1 ig
, ~4!

FIG. 2. Spectral reflectivity~R! ~a!; group delays (t t and t r 6
)

~b!; and scattering potentialq(z) ~c! for a uniform FBG with ap
phase jump~tanh-like profile!. Parameter values are:L520 cm,
L1510.6 cm,n051.5, h050.2231025, andvB51256 THz, cor-
responding to a wavelengthlB51.5 mm in vacuum. The inset in
~a! shows the full spectral reflectivity profile of the FBG; the min
mum of spectral reflectivityR at n50 is ;3%. In ~d! it is shown
the normalized intensity of an incident Gaussian pulse~dashed
curve! and corresponding reflected pulse~solid curve! for forward
incidence. The spectrum of the incident pulse is shown in~a! with
the dashed curve. The 8-ns peak pulse advancement in~d! corre-
sponds toDL51.6 m in Fig. 1~d!.
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wherek, e, and g are positive real-valued parameters th
determine strength, separation, and width of the two Lore
zian lines. Notice thatr 1(d) is a causal function since it
polesD1,257e2 ig lie in the half lower part of the complex
d plane. In addition, in order to realizer 1(d) with a pure
index grating, we assumek sufficiently small such that
uR(d)u<1 on the reald axis. From Eq.~4! it turns out that
R(d) shows a dip atd50 with R(0)5@2kg/(e21g2)#2 and
t r 1(0)5n0(g22e2)/@(g21e2)gc0#, so that superlumina
peak advancement in reflection of a spectrally-narrow pu
neard50 is expected whenevere.g. As an example, Figs
3~a! and 3~b! show the behavior of power reflectivity an
group delays for a superluminal double-Lorentzian FBG
signed to work with picosecond pulses in the third transm
sion window of optical communications. The scattering p
tential q(z) that leads to the double-Lorentzian reflectivi
profile is real-valued, i.e.,f50, and can be determined an
lytically in a closed form by use of the Gel’fand-Levitan
Marchenko inverse scattering method@16#. In particular,
one has q(z)52i @j3(z)1j4(z)# where, after settingj
5(j1 ,j2 ,j2 ,j4)T, j is the solution of the linear system:

r 1~dn!exp~22idnz!S j3

dn2D1*
1

j4

dn2D2*
D

2S j1

dn2D1
1

j2

dn2D2
D51, ~5!

(n51,2,3,4) with d1,2,3,456@(e212k22g2)6(4k4

14k2e224e2g2)1/2] 1/2. The scattering potentialq(z), corre-
sponding to the reflectivity function of Figs. 3~a! and 3~b!
and calculated by Eq.~5!, is shown in Fig.3~c!. The superlu-
minal behavior of the grating for forward pulse incidence

FIG. 3. Same as Fig. 2 but for a FBG with a double-Lorentz
spectral reflectivity profile. For the sake of clearness, in~b! the
group delay t r 2

is not shown. Parameter values are:e
5157 m21, g552.36 m21, k548.17 m21, and n051.5, vB

51256 THz. For these parameters, a 10-GHz frequency separ
occurs between the two Lorentzian peaks, with a spectral width
each Lorentzian line equal to one third of the frequency separat
A finite grating lengthL530 cm was used in the simulations fo
pulse propagation.
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 64 037601
illustrated in Fig. 3~d!, where reflection of a 210-ps duratio
~FWHM! transform-limited Gaussian pulse incident upon t
grating is simulated as an example, with a peak advancem
of the reflected pulse of;42 ps.

In conclusion, we have shown that superluminal reflect
of spectrally narrow optical pulses can occur in on
tt

.
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dimensional PBGs with an asymmetric profile of refracti
index modulation that creates a transmission window ins
the band gap. Two possible realizations of superlumi
pulse reflection, which use FBGs as photonic barriers, h
been proposed and should be experimentally accessible
nowadays available FBG devices.
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